A5系列
ZC1 Cat.1,500MHz,AWorksLP
ARM9系列
M1106/M1107 双核,四核800MHz,1GHz HDMI
M7系列
M1052 528MHz,ZigBee,Mifare,WiFi,LoRa
M1062 528MHz,WiFi,双网口,三路CAN
A7系列
M6G2C 528MHz,双网口,8串口,双CAN
A6G2C系列无线IoT核心板 528MHz,ZigBee,Mifare,WiFi,蓝牙
M6Y2C 800MHz,8串口,双网口,大容量
A6Y2C系列无线IoT核心板  800MHZ,8串口,WiFi,蓝牙
M1126 瑞芯微四核,1.5GHz,GPU
A8系列
M335x-T 800MHz,6串口,双网口,双CAN
A3352系列无线IoT核心板 800MHz,WiFi,蓝牙,RFID
A9/A9+FPGA系列
M6708-T 双核/四核,800MHz/1GHz HDMI
M7015 双核Cortex®-A9 + FPGA,766MHz
A35系列
M1808  瑞芯微双核A35,1.6GHz,AI核心板,NPU
A53系列
M62XX 1.4GHz,3路CAN FD,2路千兆,9路串口
M65XX 1.1GHz,扩展18串口或6路千兆网口
M6442 1.0GHz,5路TSN千兆网口,支持EtherCAT,GPMC
A55系列
M3568 

瑞芯微四核A55,2GHz,NPU,GPU,
VPU,Android,ubuntu,debian,鸿蒙

MD9340/MD9350 

芯驰多核,1.6GHz,
2路千兆,4路CAN FD

Risc-V系列
MR6450/MR6750 15路串口,4路CAN FD,2路千兆
MIPS系列
MX2000 1.2GHz,快速启动,实时系统

智慧温室大棚一站式米乐官方版m6(中国)官方网站IOS/安卓通用版/手机APP

一、为什么大棚要“智慧化”?

通常放置于温室大棚内栽种的植物,对生长环境都有着较为苛刻的要求,温度、湿度、二氧化碳浓度等指标都需要维持在一个稳定的范围内。早期的温室大棚,通过布置各种传感器,人工定时去查看,并对大棚内的温控器、加湿器等设备进行调整。但随着温室大棚数量越来越多、单个大棚内需要的传感器也越来越多,传感器之间的通讯线缆布线变得非常困难,通过人工去管理大棚也变得越来越难。

图1 越来越多的温室大棚

二、智慧大棚包含哪些东西?

1.采集端

要实现对大棚内环境的实时监测,给出相对较全面的环境情况,需要布置各种各样的传感器,例如:

  • 湿度传感器(空气、土壤);
  • 光照传感器;
  • 光照传感器;
  • 二氧化碳浓度传感器。
2.控制端

想要真正实现温室大棚智能化,不仅需要数据的采集上传,还需要能应对情况变化的智能控制。通过ARM平台的网关控制器,可以外接多路设备,以实现实时控制大棚内环境的效果。外接的设备包含:

  • 步进电机;
  • 水泵喷洒器;
  • 日光灯;
  • 风机;
  • 石英加热管。
图2 大棚内分布了各种传感器

三、智慧大棚整体方案

网关控制器基于Coretex-A7设计,网关与各种传感器之间通过LoRa技术进行无线连接。在取电不方便的大棚内,传感器节点均需要通过电池供电,这就需要应用LoRa技术极低的功耗。采用休眠+定时唤醒上传的工作模式,能够极大降低传感器节点的耗电量,一节干电池可以使用2~3年。

出于成本的考虑,一般情况下多个大棚会共用一个网关,这样大棚内的相关控制设备,也需要通过无线通讯来控制。同样,使用LoRa也是一种不错的选择。LoRa传输距离足够远,可接入节点数上千个,足以满足大棚内节点数需求。传输数据量较小的弊端,对于只需要发送一些简单的控制量而言也足够使用了。

图3 智慧大棚整体方案框图

交互方面,网关控制器上可以外接一个显示屏和触摸屏,方便在现场排查故障和调试用。所有数据汇总到网关后,通过4G的方式将数据上传到云平台,管理人员在远程使用PC或手机登录访问,即可由云平台下发相应的控制指令。

图4 大棚管理平台